Symmetric group blocks of small defect

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On defect groups for generalized blocks of the symmetric group

In a paper of 2003, B. Külshammer, J. B. Olsson and G. R. Robinson defined l-blocks for the symmetric groups, where l > 1 is an arbitrary integer. In this paper, we give a definition for the defect group of the principal l-block. We then check that, in the Abelian case, we have an analogue of one of M. Broué’s conjectures.

متن کامل

Defect of characters of the symmetric group

Following the work of B. Külshammer, J. B. Olsson and G. R. Robinson on generalized blocks of the symmetric groups, we give a definition for the l-defect of characters of the symmetric group Sn, where l > 1 is an arbitrary integer. We prove that the l-defect is given by an analogue of the hook-length formula, and use it to prove, when n < l, an l-version of the McKay Conjecture in Sn.

متن کامل

Vertices of Specht Modules and Blocks of the Symmetric Group

This paper studies the vertices, in the sense defined by J. A. Green, of Specht modules for symmetric groups. The main theorem gives, for each indecomposable non-projective Specht module, a large subgroup contained in one of its vertices. A corollary of this theorem is a new way to determine the defect groups of symmetric groups. The main theorem is also used to find the Green correspondents of...

متن کامل

On blocks with abelian defect groups of small rank

Let B be a p-block of a finite group with abelian defect group D. Suppose that D has no elementary abelian direct summand of order p. Then we show that B satisfies Brauer’s k(B)-Conjecture (i. e. k(B) ≤ |D|). Together with former results, it follows that Brauer’s k(B)-Conjecture holds for all blocks of defect at most 3. We also obtain some related results.

متن کامل

A characterization of the symmetric group of prime degree

Let $G$ be a finite group and $Gamma(G)$ the prime graph of $G$‎. ‎Recently people have been using prime graphs to study simple groups‎. ‎Naturally we pose a question‎: ‎can we use prime graphs to study almost‎ ‎simple groups or non-simple groups? In this paper some results in‎ ‎this respect are obtained and as follows‎: ‎$Gcong S_p$ if and only‎ ‎if $|G|=|S_p|$ and $Gamma(G)=Gamma(S_p)$‎, ‎whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2004

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2004.04.006